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Abstract

Based on a nonclassical hardening law and the Hill’s self-consistent scheme, a new approach is proposed for the
analysis of polycrystal nonproportional cyclic plasticity. A novel parameter related to the plastic dissipation on each
slip system is proposed and embedded in the Bassani’s definition of cross-hardening. The tangential elastoplastic tensor
relating the increments of stress and strain in a single crystal is derived and the corresponding numerical algorithm for
polycrystal plasticity is developed. The elastoplastic response of 316 stainless steel subjected to typical biaxial non-
proportional strain cycling is analyzed, and the main features are well replicated. The validity of the proposed approach
is demonstrated by the satisfactory agreement between the computed results and experimental observation.
© 2003 Elsevier Ltd. All rights reserved.
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1. Introduction

The research on constitutive models for nonproportional cyclic plasticity is of great importance in the
stress analysis and life prediction for structures and machine components subjected to severe loading
conditions. This is mainly due to the fact that stress and strain generally distribute nonuniformly and vary
nonproportionally, and the low-cycle fatigue life under nonproportional cyclic loading is much less than in
the proportional cases (Krempl and Lu, 1987; Brown and Miller, 1982).

In the past two decades, various constitutive descriptions have been proposed for the cyclic plasticity of
polycrystalline materials, such as those by Ohno (1982), Chaboche and Rousselier (1983), McDowell
(1985), Sotolongo and McDowell (1986), Krempl and Lu (1987), Benallel and Marquis (1987), Murakami
et al. (1989), McDowell (1987), Moosbrugger and McDowell (1989), Bassani (1990), Fan and Peng (1991),
Tanaka (1994), Peng and Ponter (1994), Hwang and Sun (1994), Peng et al. (1997), and Peng and Fan
(2000). Among these descriptions, those based on the slip mechanism of single crystals and self-consistent
schemes (Bassani, 1990; Hwang and Sun, 1994; Peng et al., 1997; Peng and Fan, 2000) are of special interest
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due to the attempt to gain insight into the hardening behavior of polycrystalline materials under non-
proportional cyclic loading.

Great progress has been achieved in crystal plasticity since it was firstly proposed by Taylor (1938) and
extended by Bishop and Hill (1951). Lin (1957) extended Taylor’s model to include elastic strain. Kroner
(1961), and Budiansky and Wu (1962) proposed a model that specified a self-consistent scheme for cal-
culating the overall stress-strain behavior of a polycrystal by taking into account the interaction between
crystals in a particular way. With the development of the Hill’s self-consistent scheme, a more general
system related to the geometry and kinetics of crystal plasticity was completed (Hill, 1966; Hill and Rice,
1972). In the past decades, the Hill’s self-consistent scheme received increasing attention and be applied to
various problems (Hutchinson, 1970; Berveiller and Zaoui, 1979; Fan, 1999).

Meanwhile, progress was also made in the description of the constitutive behavior of slip systems and
crystals. The conventional constitutive relationship of a slip system was derived within the framework of
the conventional theory of plasticity, i.e., taking the existence of a critical shear stress as its premise. The
activation of a slip system depends on this critical shear stress and the corresponding slip criterion. A new
slip model and the corresponding hardening law were recently proposed by Peng et al. (1997), and Peng and
Fan (2000), alternatively, which takes into account the contribution of the energy stored in the micro-
structure of a plastically deformed material to the subsequent plastic deformation. It does not use the
concept of a critical shear stress and the corresponding slip criterion. The corresponding analysis, therefore,
is greatly simplified because it involves no additional process for the determination of the activation of slip
systems and the direction of slip. The corresponding approach based on the KBWs self-consistent scheme
was developed and applied to the nonproportional cyclic plasticity of polycrystalline materials (Peng et al.,
1997; Peng and Fan, 2000).

In this paper, a new approach for polycrystal plasticity is developed based on the nonclassical hardening
law (Peng et al., 1997; Peng and Fan, 2000) and the Hill’s self-consistent scheme. A new parameter related
to the plastic dissipation on each slip system is introduced and embedded in the Bassani’s definition for
cross-hardening, which greatly improves the description for nonproportional cyclic plasticity. The tan-
gential elastoplastic tensor relating the increments of stress and strain in a single crystal is proposed and the
corresponding numerical algorithm for polycrystal plasticity is developed. The elastoplastic responses of
316 stainless steel subjected to cycling along typical proportional and biaxial nonproportional paths are
analyzed, and the main characteristics of polycrystal nonproportional cyclic plasticity are well described
compared with experimental results (Murakami et al., 1989; Ohashi et al., 1985).

2. A brief introduction to the nonclassical hardening law

In polycrystalline materials, the deformation of any single crystal is inevitably constrained by the
neighboring crystals due to the nonhomogeneous morphology of the materials, which may result in residual
microstress fields. On the other hand, in a plastically deformed single crystal, there also exist residual
microstress fields in the stochastic microstructures due to the nonhomogeneous nature and the respective
pattern of lattice defects, for instance, dislocations (Song, 1992). The energy stored in the residual micro-
stress fields may contribute to the subsequent plastic deformation. With this concept, a hardening law was
proposed for single crystals (Peng et al., 1997; Peng and Fan, 2000) as follows:

N
e =3 " (m=1,2,...,N), (1)
n=1

where 7 and " denote the slip amount and the shear stress on the mth slip system; N, the number of the
independent slip systems; J,,,, the Kronecker symbol and #,,,, the hardening coefficient expressed as
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hyn = TuOmn  (m not summed), 2)
with
Fm d'\ (m)
T,=C —;;Hm ™, T, = ﬁ (m not summed), (3)

C and o are material dependent parameters. f,, and H, are hardening functions describing respectively
instantaneous hardening related to the slip on the mth slip system, and cross-hardening related to the in-
teraction between the slips on different slip systems (Bassani, 1990). It can be proved that 4, is positively
definite if f,,H, is positive and nondecreasing, which guarantees the existence and uniqueness of the
solution. {™ is the accumulated slip on the mth slip system defined by

g = 1y, (4)

which is nondecreasing and can be used as generalized time to measure the slip history of the mth slip
system. In order to simplify the nonlinear analysis, an intrinsic time, originally proposed by Valanis (1980),
was introduced to describe the plastic deformation history on the mth slip system as follows:

dC(M)
(m) _
a Sy

With this definition and making use of Egs. (1)—(3), the evolution of the shear stress on the mth slip
system can be expressed as

dr™ = Cdy™ — ar™ dz™  (m not summed, m=1,...,N). (6)

(m not summed). (5)

It is worthwhile to emphasize that this slip model does not use the concept of a critical shear stress, due
to the consideration of the contribution of the energy stored in the residual microstress fields to the sub-
sequent plastic deformation. However, the critical shear stress, as used in the conventional slip model, can
be obtained as a special case from the above slip model by assuming « tends to infinite while C/o remains
limited (Peng and Fan, 2000)

T, = tagfuH, (m not summed), (7)

where ay = C/a represents the initial critical shear stress. Eq. (7) can be also equivalently derived from the
model without taking into account the energy stored in the residual microstress fields and its contribution
to subsequent plastic deformation (Peng and Fan, 2000).

3. Physically based hardening functions

In Eq. (3), hardening functions f,, and H, are introduced to describe respectively the instantaneous
hardening related to dislocation pile-ups, and the cross-hardening related to dislocation tangles. During
plastic deformation, obstacles formed by the pile-ups and tangles of dislocations increase the resistance to
active dislocations and result in macroscopic hardening.

Dislocation pile-ups induce long-range residual microstress fields, which are directional and thus kine-
matic, accounting for the Bauschinger effect to some extent. The hardening of a slip system induced by
dislocation pile-ups should be, therefore, determined by the superposition of the effects of the corres-
ponding residual microstress fields caused by dislocation pile-ups in all slip systems.

The hardening related to dislocation tangles can be attributed to the interaction between the active
dislocations and dislocation forests. The associated residual microstress fields are of short-range and less
directional. This type of hardening depends strongly on slip histories and the states of dislocation on all slip



5410 X. Peng, J. Fan | International Journal of Solids and Structures 40 (2003) 5407-5422

systems. On the other hand, the interaction between dislocations from different slip systems may make
different contribution to hardening.

Suppose f,, possesses a saturated value corresponding to the saturated state of dislocation, the evolution
of f,, with respect to intrinsic time z" should be related to the current f,, and may be given approximately
the following simple form,

dm
ﬁ:ﬂ](dl_fm) (mzlaza"'aN)a (8)

where d; and f; are two material parameters representing the saturated value of f,, and the rate for f,, to
approach d, respectively.

Based on a detailed analysis of cross-hardening mechanisms, Bassani (1990) proposed a hardening rule
to describe cross-hardening, and the form of this rule is directly adopted to be the cross-hardening function
H,, ie.,

H, =1+ Jutanh(28(%) (m=1,2,...,N), (9)
k#m

where (' denotes the accumulated slip on the kth slip system, f, is a material parameter representing the
rate for H,, to approach its saturation value, and 4, is a coupling parameter related to the orientations of
the considered two slip systems m and k, taking into account the contribution of the accumulated slip on the
kth slip system to the hardening of the mth slip system.

A direct application of Eq. (9) in the current constitutive framework may overestimate the cross-
hardening in the case of proportional cyclic loading if f,; is simply composed of a set of constants (Peng
et al., 1997; Peng and Fan, 2000). It is known that the summation of the dissipated energy on all slip
systems equals the energy dissipated during the corresponding macroscopic plastic deformation. Compared
with a proportional cyclic loading, it can be found that more energy is dissipated during nonproportional
cyclic loading since it may involve less unloading and plastic deformation may develop at a higher level of
stress. Consequently, it may induce stronger residual microstress fields and more energy stored in the
microstructures, which accounts for the cross-hardening in materials. With this concept a dissipated energy
ratio for the mth slip system is defined as follows:

(m)
in which
n™ = /‘c('") dy™  (m not summed) (11)

denotes the energy dissipated on the mth slip system, 4,, is the parameter related to material property and
the current state of instantaneous hardening, f,,. If 4,, = 1,,C/a, as used in the analysis, the denominator on
the right-hand side of Eq. (10) represents a bound of the dissipated energy on the mth slip system under the
condition of H,, = 1, i.e., without taking into account the cross-hardening (see Appendix A). It will be seen
that the combination of this dissipated energy ratio and Bassani’s hardening rule can yield a satisfactory
description for additional nonproportional hardening.

With the proposed dissipated energy ratio, the coupling coefficients 4,, (Eq. (9)) can be defined as
follows:

y—— gm,,i(”’)é(”) (m,n=1,2,...,N; m,n not summed), (12)

where g,,, can be expressed in the following matrix form (Bassani, 1990), with the sequence identical with
that of the 12 independent slip systems (see Table 3):
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0 C1 C1 C3 Cp C C € C €1 €3
0 C1 C €1 € €1 €3 (€1 €3 C1 O

0 Cl Cp C3 Cp C1 C3 C C

0 C1 C1 Cr Cr Cr C3

0 Cp €3 Cp €1 C (€1 ¢C3

. 0 Ci Cp ¢C3 €1 C
(8] = 0 o ; (13)
1 €1 ¢ & C3

0 C1 Ci3 Cp (O

sym. 0 ¢ ¢ ¢
0 C1 C1

0 C1

0

where ¢, ¢; and ¢; are material constants. It can be seen that the coupling between the dislocation states on
two slip systems is introduced into the cross-hardening via /,,, by taking into account the dissipated energy
ratios on these two slip systems. In general, the dissipated energy ratio is smaller and the corresponding
cross-hardening is insignificant under proportional loading. The dissipated energy ratio may increase re-
markably in the case of nonproportional loading, which may result in strong cross-hardening. It will be
seen that the proposed hardening parameter /,, can effectively distinguish the nonproportional hardening
corresponding to different types of strain paths.

It can be seen that there exist saturated values d; and 1+, 4m Ami for f,, and H,, respectively. It can be
shown that the shear stress on a slip system has a saturated value when plastic deformation fully develops,
and the hardening modulus 7,, tends to vanish as the shear stress approaches its saturated value.

It is known that besides the cross-hardening corresponding to nonproportional loading, the additional
hardening corresponding to cyclic plastic strain range also plays an important role in the cyclic plasticity of
metallic materials (Tanaka et al., 1985a; Ohno, 1990; Fan and Peng, 1991). Fan and Peng (1991) introduced
a hardening factor, related to the cyclic nonhardening region proposed by Ohno (1982) and Ohno and
Kachi (1986), into a multiplicatively separated form of hardening function to describe the effect of plastic
strain amplitude. Although in this paper attention is mainly paid to the effect of nonproportionality, we like
to mention that the additional hardening related to plastic strain amplitude can also be taken into account
by f. (Eq. (8)), provided the parameter d; is related to the amplitude of the slip on each slip system. It will
be studied in the further improvement of the proposed model.

4. Hill’s self-consistent scheme

In the KBW self-consistent scheme, a crystal is assumed to be embedded in a homogeneous matrix. Hill
(1965) and Hutchinson (1970) criticized the KBW model for its elastic matrix and proposed a new self-
consistent scheme where the embedded inclusion is subjected to the homogeneous constraint of the matrix
associated with overall elastoplastic tangent moduli. The misfit strain between the inclusion and the matrix
tends to be absorbed locally in the surrounding matrix. Therefore, the constraint tensor for the outer phase
may not be homogeneous and the self-consistent scheme is based on the assumption of uniform overall
constraint tensor (Takahashi et al., 1994). Takahashi (1988) thought that the KBW scheme gives the upper
limit of the flow stress, whereas the Hill’s scheme gives the lower limit. Takahashi et al. (1994) performed a
finite element analysis of elastoplastic behavior of FCC polycrystalline metals with the initial strain method
and the successive integration method, and found that the computed results fit the results with the KBW
model better compared with the results using the Hill’s self-consistent scheme. Peng et al. (1997), Peng and
Fan (2000) also analyzed the cyclic plasticity of FCC polycrystalline materials with a new slip model and
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the KBW scheme, and results obtained are reasonable compared with the experimental results. However,
the Hill’s self-consistent scheme is to be used in the following analysis, because it is thought that, in gen-
eral, the Hill’s self-consistent scheme may provide more actual result because it employs less assumptions,
although it may involve some numerical difficulties due to complicated implicit iteration.

Suppose the considered crystals and polycrystal are plastically incompressible, under the condition of
isothermal and small deformation, the Hill’s self-consistent scheme (Hill, 1965) gives

do, —de = —L" : (de, — dg), (14)
where do, and de. denote respectively the increments of the stress and strain tensors of a single crystal, do

and dg are the increments of the averaging stress and plastic strain of the polycrystal, and L* is a tangential
“constraint” tensor. L* is determined by

L'=L:(S"'-1L), (15)
where 14 is the identity tenser of rank 4, L is the tangential elastoplastic tensor relating de and dg by

de =L :dg, (16)
and S is the Eshelby’s tensor. Assuming spherical inclusion, the Eshelby’s tensor can be expressed as

S=adLL +b,—L L] (17)
with

b=lsioy a=1-b (18)
and I,, the identity tenser of rank 2. dg is related to de. by the following relationship

de. = A, : dg (19)
with

Ac=[L"+LJ " L+ L], (20)
and L. is the tangential elastoplastic tensor relating do, and de. of a single crystal by

do, = L, : de.. (21

Egs. (19) and (20) give the following invariant for each crystal
dq=[L"+Lg]:de. =[L"+1L]:ds, (22)

which is important in analysis. Assuming the overall increment of stress do to be determined by de, of all
single crystals through a certain averaging procedure, one obtains the relationship between de and dg as
follows:

de = (do.) = (L. : A.) : d&. (23)
Comparing Eq. (23) with Eq. (16) immediately gives
L=(L:A). (24)

5. Application and verification
5.1. Tangential elastoplastic modulus of a single crystal

It was pointed out that when « is very large, extending Eq. (6) directly to an incremental form would
result in a large error in numerical analysis and even affect the convergence of the solution (Peng and Fan,
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1993). In order to avoid this situation, the integral of Eq. (6) was introduced and the following incremental
constitutive equation was derived (Peng and Fan, 2000):

At™ = 4,,Ay™ + B, Az (m not summed), (25)
in which

Ap =k,C, B, = —k,ot™(z), zm =z 4 A"
1— e—ozAz("” ( Ac(M)

kmziv AZm) — T, 7

m not summed), 26

zm and 1,,(z™) denote respectively the intrinsic time and the corresponding shear stress on the mth slip
system after the nth increment of loading, with which Eqgs. (1)-(3) can be rewritten as
I'uB, Ayt

At = T, Ay™ . T, = A, + T H,’ r,= AL (m not summed). (27)

The hardening law for the mth single crystal, therefore, can be rewritten as follows:

At = i Py Ap™. (28)
o
It is known that At™ and Ay™ relate respectively to Ae. and AgP of the corresponding single crystal by
At =p, : Ao, Asd = ZN:pm Ay (29)
o
where
Py = 3Ny @8, +5, @0,) (30)

denotes the orientation tensor of the mth slip system, n,, and s,, are the unit vectors directing along res-
pectively the outer normal of the slip plane and the slip direction.

It has been noted that the hardening tensor 4, is positively definite, Eq. (1), therefore, can be expressed
inversely as follows:

N
A =3 by At (m=1,2,...,N). (31)
n=1

Making use of Egs. (29) and (31), one obtains

N N
Agl = [Z > buP, @P,| : Ac.. (32)
m=1 n=1
Substituting
Ag. = AL + Ae? and A =D_': Ao, (33)

into Eq. (32), where Ag{ and D, denote the increment of the elastic strain of a singe crystal and the elastic
modulus of the material, one derives the following relationship

Ao, =L, : Ag, (34)
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with

N N -1

L= D' +> > buP,@P,| . (35)

m=1 n=1

The matrix form of this equation is given in Appendix B.
5.2. A mixed averaging procedure

In general, Eq. (24) can be expressed as follows:

1 &

L= > Lt AV, (36)

i=1

where [L. : A, and V; represent respectively the [L : A;] and the volume of the ith single crystal; ¥, the
volume of the polycrystal and N’, the number of the present single crystals. If the volume of each single
crystal is assumed identical, i.e., ¥ = N'V}, then Eq. (34) can be rewritten as

1 &

L= ;[LC A (37)
With the assumption that a polycrystal is an aggregate of numerous single crystals with randomly
distributed orientations, Eq. (37) can be expressed as an integral and then calculated with the some nu-
merical quadrature approach. This method, in substance, determines approximately the response of a
polycrystal using a number of single crystals with specific orientations by weight factors. In order to make
the specified orientations distribute as uniformly as possible and make the computation more efficient, a
mixed averaging approach was proposed alternatively (Peng et al., 1997; Peng and Fan, 2000) for poly-
crystal analysis (Peng et al., 1997; Peng and Fan, 2000). It is based on an isosahedron: the outer normal
directions of the 20 faces determine 20 spatially uniformly distributed orientations and are represented by
20 sets of 0; and ¢, (1,2,...,20), and in each face it is assumed that there are numerous single crystals with
randomly distributed orientations, i.e., @ varies continuously (see Fig. 1). If the arithmetic averaging
procedure is used for 0; and ¢, (i = 1,2,...,20) and the Gaussian averaging for w, Eq. (37) can be specified

as

1 20 1 T
L= % ; % [n LC(Hia f»a)) . AC(9i7 ivw) do. (38)

Fig. 1. Global and local coordinate systems.
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Table 1
Coordinates of Gaussian points w; and the corresponding weight coeflicients 47
j 1 2 3 4
; (rad) 0.1090633 0.5183777 1.052419 1.461733
A9 0.3478548 0.6521452 0.6521452 0.3478548
Table 2
Values of the 10 sets of independent 0; and ¢,
J 1 2 3 4 5 6 7 8 9 10
0; (°) 0 72 144 216 288 288 216 144 72 0
¢, (°) 37.38 37.38 37.38 37.38 37.38 79.19 79.19 79.19 79.19 79.19

It can be observed that the 20 faces of an isosahedron can be separated into 10 sets, in each of which the
two faces are parallel to each other. On the other hand, the integral domain of w can be reduced to [0, 7/2]
due to symmetry. Applying the Gaussian quadrature to Eq. (36), one obtains

1 o, 4 )
L= 20 ; ;AJ’ L.(0;, ¢, wj) S AL(0;, ¢iij)a (39)

where the coordinates of the Gaussian integration points ; and the corresponding weight coefficients 47
are given in Table 1, and the values of the 10 sets of independent 0; and ¢, (i =1,2,...,10) are listed in
Table 2.

The above averaging procedure involves the responses of 40 single crystals with different orientations,
with improvement by the Gaussian weight coefficients. Analysis shows that this mixed procedure can be of
satisfactory numerical stability and convergence in the analysis for the elastoplastic responses of poly-
crystalline materials subjected to complex loading histories.

5.3. Application and verification

The elastoplastic responses of 316 stainless steel subjected to typical proportional and biaxially non-
proportional strain cycling are analyzed. The material has a face-centered-cubic (FCC) crystal lattice. In the
local coordinate system, the n and s of the 12 independent slip systems are listed sequentially in Table 3.

The corresponding numerical algorithm for analyzing the elastoplastic behavior of polycrystalline ma-
terials subjected to strain histories is suggested and stated as follows: with the result obtained from the kth
iteration of the nth 1ncrement of loading, such as (Ao) of the polycrystal, (Asc) *) and (Ao-c) ®) of each
single crystal, (A ) (As " ) ,and (Az" )( , of each shp system, one can compute [h,j]( w1th Eqs (26)
(27) and (2), [L } and [A } for each single crystal with Egs. (35) and (20) respectively, and then [L ] for
the polycrystal w1th Eq. (39) For the given nth increment of strain (Ag) (Aq) (1) can be obtained us1ng

Eq. (20), with which (Aat) 1) can be obtained by solving Eq. (22), and then (Ao-c) (k1) (Ar,,,)Eﬁ)+1 and

Table 3
n and s of the 12 independent slip systems of a FCC crystal

1 2 3 4 5 6 7 8 9 10 11 12

n ain (g1 @qirn @iy ainp @iy ain i aqain a1y o A1y A1
s [101] [011] [110] [110] [011] [101] [101] [110] [011] [101] [011] [110]
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(Aym)g‘,fl) by Egs. (21), (29) and (31), sequentially. The iterative process continues until the following in-

equality is satisfied,

NI
0 = max
J=1 ‘

<. (40)

J

After superimposing the derived increments on the corresponding quantities up to the (n — 1)th incre-
ment of loading, one obtains (), of the polyerystal, and () > (Su)(ys (Zm) (> () (s (H) ) OF €ach slip
system, and then starts the computation of the next increment of loading. In Eq. (40) J, is the tolerant error,
computation shows that §, = 0.01 can satisfy the requirement of both accuracy and computational effi-
ciency.

The responses of 316 stainless steel subjected to cycling along proportional and biaxial nonproportional
strain paths at room temperature will be analyzed. The material constants were identified with the ex-
perimental result by Tanaka et al. (1985b) and shown in Table 4.

The response of a slip system during a loading—unloading-reloading process is shown in Fig. 2, where
the cross-hardening is ignored. The solid line corresponds to the o and C/« given in Table 4; while the
dashed line corresponds to o = 2500 and C/o = 0.095 GPa, i.e., both « and C are reduced to 10% of the
values in Table 4. It is seen that, when « is sufficiently large, the constitutive behavior of a slip system
predicted with the proposed slip model can be sufficiently close to that with the conventional slip model.
With a proper choice of «, the proposed slip model can describe to some extent the Bauschinger effect. For
the biaxial loading in the following analysis, the following stress and strain vectors are defined respectively:

1
¢ = on; + \/§m2, EZ eny + —=7y, (41)

V3

where ¢ and 7 denote respectively the axial and the shear stress, ¢ and y are the axial and shear strain, n; and
n, are two unit vectors perpendicular to each other. The equivalent stress and strain, ¢, and &, as well as the
accumulative strain s are also defined as follows:

Table 4

Material constants
G (GPa) v C/a (GPa) « d c c c3 A
78.0 0.231 0.0952 25000 1.0 0.0 0.09 0.135 196

120

80 H /

401

7 (MPa)

120 L L L L L
-15 -1 05 0 05 1 15

Y (%)

Fig. 2. The loading-unloading-reloading property of a slip system.
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. 1 -
du =16 = VA 3R, &=\ 0 s [l (42)

The responses of the material subjected to symmetrically tensile/compressive strain cycling and pure
shear strain cycling with a fixed equivalent strain amplitude ¢, = 0.4% are shown in Figs. 3 and 4, res-
pectively. They are in good agreement with the experimental results (Ohashi et al., 1985; Murakami et al.,
1989). Compared with the previous analysis (Peng et al., 1997), it can be seen that the hardening that was
overpredicted is satisfactorily described by using the new definition for cross-hardening. Distinct difference
in the shapes of the hysteresis loops can be observed between these two kinds of strain cycling. On the other
hand, the equivalent stress amplitudes corresponding to shear strain cycling is distinctly smaller than that
corresponding to the tensile/compressive strain cycling (also see Fig. 7) although the equivalent strain
amplitudes are identical. These differences coincide with the experimental observation (Ohashi et al., 1985).
These differences can be attributed to the difference of the activated slip systems under these two kinds of
loading, which cannot be well described simply by the phenomenological model with Mises equivalent rule.

In the analysis for the response of materials subjected to nonproportional strain cycling, one usually
defines the radius of the minimal super-sphere surrounding the strain path as the equivalent strain am-
plitude &,. Figs. 5(b) and 6(b) show, respectively, the computed biaxial stress trajectories corresponding to
cyclic strain along a square (Fig. 5(a)) and 90° out-of-phase circular (Fig. 6(a)) paths with ¢, = 0.4% in the
e—7/ /3 plane, which are in good agreement with the experimental results (Ohashi et al., 1985; Murakami
et al., 1989). Compared with the results corresponding to proportional paths (Figs. 3 and 4), the stress

400

200

o (MPa)

-200

400 . . . .
-06 -04 -02 0 02 04 06

e (%)

Fig. 3. Computed o—¢ curve under symmetrically tensile/compressive strain cycling with ¢, = 0.4%.

400

200

-200 |

(SQRT(3)*t) (MPa)

400 . . . .
-06 -04 -02 0 02 04 06

(v/ SQRT(3)) (%)

Fig. 4. Computed v/37—y/+/3 curve under symmetrically torsional strain cycling with ¢, = 0.4%.
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06 600
< o3} & s00f
= S
D =
E 0 ﬁ 0
] )
N =
< % ; 7
Z 03} @ 300} N\ =
0.6 . . -600 . .
06 -03 0 03 06 600 -300 0 300 600
(@) e (%) (b) ¢ (MPa)

Fig. 5. Response to strain cycling along a square path in &~y/+/3 plane with &, = 0.4%. (a) Controlled square strain path in &y/v/3
plane and (b) computed stress trajectory in o—v/37 plane.
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Fig. 6. Response to strain cycling along a circular path in &—y/+/3 plane with ¢, = 0.4%. (a) Controlled square strain path in &y/v/3
plane and (b) computed stress trajectory in o—v/37 plane.

amplitudes in Figs. 5 and 6 increase by about 60% (also see Fig. 7), which can be attributed to the non-
proportional hardening of the material. In phenomenological analysis, it was usually described by intro-
ducing an appropriate definition of nonproportionality and the corresponding hardening rules (Benallel
and Marquis, 1987; Fan and Peng, 1991; Tanaka, 1994). However, some fundamental experimental results
cannot be well described due to the complicated change in the microstructure. The main features of the 316
stainless steel subjected to typical biaxial nonproportional cycling strain paths are satisfactorily described
with the proposed approach and the modified cross-hardening rule.

The variations of the maximum equivalent stress o, against the accumulative strain s of the material
subjected to cyclic strain along six typical biaxial paths in the e—y/+/3 plane with constant strain amplitude
&, = 0.4% are shown in Fig. 7(a), among which, the curves corresponding to cyclic tension/compression and
90° out-of-phase circular paths are in satisfactory agreement with the experimental curves obtained by
Murakami et al. (1989), as shown in Fig. 7(b).

As was done by Tanaka et al. (1985b) in the experiment on plastic strain controlled nonproportional
cyclic plasticity, the strain paths used in Fig. 7(a) can also be classified into three groups: (1) proportional
ones (cyclic tension/compression and cyclic torsion); (2) paths with radiation segments (stellate and cruci-
form ones); and (3) paths without any segment passes through the origin (square and 90° out-of-phase
circular ones). Tanaka et al. (1985b) investigated experimentally the nonproportional cyclic plasticity of 316
stainless steel along these paths in the &"—?/+/3 plane with plastic strain amplitude &2 = 0.2% and the
experimental relationships between o.q and accumulative plastic strain sP corresponding to these paths are
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Fig. 7. The relationships between the equivalent stress amplitudes and the accumulated strain or plastic strain along different paths. (a)
Computed, strain controlled, (b) experimental, strain controlled (Murakami et al., 1989) and (c) experimental, plastic strain controlled

(Tanaka et al., 1985b).

shown in Fig. 7(c) (Tanaka et al., 1985b). Compared with the results by Tanaka, qualitative agreement, in

both the saturated values of o.q and the sequence of curves, can be observed.

6. Conclusions

The following conclusions can be drawn from the above analysis:

M

(@)

(©)

The adopted nonclassical hardening law can take into account the contribution of the energy stored
in the microstructure of a plastically deformed material to subsequent plastic deformation. It does
not use the concept of a critical shear stress and the corresponding slip criterion, which may bring con-
venience to analysis because it involves no additional process to identify the activation of slip systems
and the direction of slip.

Both instantaneous hardening and cross-hardening can be taken into account. A ratio of the energy
dissipated on each slip system with respect to the maximum possible dissipated energy without consi-
dering cross-hardening was defined and embedded in the Bassani’s cross-hardening parameters. It yields
a simple cross-hardening rule that proves effective in the description for the nonproportional cyclic plas-
ticity of polycrystalline materials.

The corresponding numerical algorithm based on the Hill’s self-consistent scheme and a mixed averag-
ing method was developed for the analysis of elastoplastic responses of polycrystalline materials. The
computation shows satisfactory numerical stability, quick convergence and high efficiency.
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(4) The cyclic plasticity of 316 stainless steel subjected to cyclic straining along typical proportional and
biaxially nonproportional paths was analyzed and the main characteristics were well reproduced. Com-
parison between the computed and the experimental results showed satisfactory agreement.
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Appendix A

The integral of Eq. (6) can be expressed as:

L(m)

m —a(zm 7 dy(m>
7 >=/0 Ce "7 o dz. (A1)
Noticing Egs. (4) and (5) and assuming H,, = 1, a bound of the absolute value of 7 can be determined
by
2m) (m) 2m) (1) 2(m)
|T(m)| — / Cef(x(z(m)fz/) dV dZ/ < / Cefoc(z(m),z/) d)) dZ/ — Cfm/ Ce—a(z(m),zl)dzl
0 dZ, 0 dZ/ 0
C _yo(m) C .
=—fu(1—e™* — fom- A2
a1 =) <1 (A2)
A bound of the dissipation energy 7™ (Eq. (11)) on the mth slip system, therefore, can be obtained by
m) (m) fm
z d,y(m) z d,y(m) C ¢ C
(m) _ (m) > (m) b m _C o ovm
n /0 T & dZ' < /0 [z & dZ < ocfm i d¢ afmC . (A.3)
Appendix B
Egs. (28)—(30) can be expressed in matrix forms as follows:
{At} = [H{Ay} or {Ay} = [H] '{Ad}, (B.1)
{Agl} = [P{Ay} {Aq} = [P]"{Ac} (B.2)
in which
Pl =[{p'}. {p°}.--. (P"}], (B.3)
with
m ug m g 71 g g T
"} = (Pnapzzvp33v2P1272P2372P31) ) (B.4)
{AT} = (ATHAT%AT%"'?ATN)T? {A'))} = (AVI,AV27A73,...,A'))N)T, (BS)

{AGC} = (A0c117A0c22, Aoz, Ao, AO—CZ37A0-031)T (B-6)
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and
{Ae} = (Aehy, Adlyy, Aelyy, 2Ael,, 2 Aelhy, 2 A6l ) (B.7)
It can be obtained from Egs. (B.1) and (B.2) that
{Ael} = [PI[H]'[P]' {Acc}. (B.8)
Keeping in mind that
{Ae.} = {Ae’} + {Aes} and {Ae} = [DF] '{Ac.}, (B.9)
{Ag¢} and [D°] denoting the increment of elastic strain of a single crystal and the elastic matrix, one obtains
{Aoc} = [Le[{Aec}, (B.10)
with
L = [0+ P (P (B11)
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