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Abstract

Based on a nonclassical hardening law and the Hill�s self-consistent scheme, a new approach is proposed for the

analysis of polycrystal nonproportional cyclic plasticity. A novel parameter related to the plastic dissipation on each

slip system is proposed and embedded in the Bassani�s definition of cross-hardening. The tangential elastoplastic tensor

relating the increments of stress and strain in a single crystal is derived and the corresponding numerical algorithm for

polycrystal plasticity is developed. The elastoplastic response of 316 stainless steel subjected to typical biaxial non-

proportional strain cycling is analyzed, and the main features are well replicated. The validity of the proposed approach

is demonstrated by the satisfactory agreement between the computed results and experimental observation.

� 2003 Elsevier Ltd. All rights reserved.

Keywords: Crystal plasticity; Hardening law; Hill�s self-consistent scheme; Polycrystal; Nonproportional cyclic plasticity
1. Introduction

The research on constitutive models for nonproportional cyclic plasticity is of great importance in the
stress analysis and life prediction for structures and machine components subjected to severe loading

conditions. This is mainly due to the fact that stress and strain generally distribute nonuniformly and vary

nonproportionally, and the low-cycle fatigue life under nonproportional cyclic loading is much less than in

the proportional cases (Krempl and Lu, 1987; Brown and Miller, 1982).

In the past two decades, various constitutive descriptions have been proposed for the cyclic plasticity of

polycrystalline materials, such as those by Ohno (1982), Chaboche and Rousselier (1983), McDowell

(1985), Sotolongo and McDowell (1986), Krempl and Lu (1987), Benallel and Marquis (1987), Murakami

et al. (1989), McDowell (1987), Moosbrugger and McDowell (1989), Bassani (1990), Fan and Peng (1991),
Tanaka (1994), Peng and Ponter (1994), Hwang and Sun (1994), Peng et al. (1997), and Peng and Fan

(2000). Among these descriptions, those based on the slip mechanism of single crystals and self-consistent

schemes (Bassani, 1990; Hwang and Sun, 1994; Peng et al., 1997; Peng and Fan, 2000) are of special interest
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due to the attempt to gain insight into the hardening behavior of polycrystalline materials under non-

proportional cyclic loading.

Great progress has been achieved in crystal plasticity since it was firstly proposed by Taylor (1938) and

extended by Bishop and Hill (1951). Lin (1957) extended Taylor�s model to include elastic strain. Kroner
(1961), and Budiansky and Wu (1962) proposed a model that specified a self-consistent scheme for cal-

culating the overall stress-strain behavior of a polycrystal by taking into account the interaction between

crystals in a particular way. With the development of the Hill�s self-consistent scheme, a more general

system related to the geometry and kinetics of crystal plasticity was completed (Hill, 1966; Hill and Rice,

1972). In the past decades, the Hill�s self-consistent scheme received increasing attention and be applied to

various problems (Hutchinson, 1970; Berveiller and Zaoui, 1979; Fan, 1999).

Meanwhile, progress was also made in the description of the constitutive behavior of slip systems and

crystals. The conventional constitutive relationship of a slip system was derived within the framework of
the conventional theory of plasticity, i.e., taking the existence of a critical shear stress as its premise. The

activation of a slip system depends on this critical shear stress and the corresponding slip criterion. A new

slip model and the corresponding hardening law were recently proposed by Peng et al. (1997), and Peng and

Fan (2000), alternatively, which takes into account the contribution of the energy stored in the micro-

structure of a plastically deformed material to the subsequent plastic deformation. It does not use the

concept of a critical shear stress and the corresponding slip criterion. The corresponding analysis, therefore,

is greatly simplified because it involves no additional process for the determination of the activation of slip

systems and the direction of slip. The corresponding approach based on the KBWs self-consistent scheme
was developed and applied to the nonproportional cyclic plasticity of polycrystalline materials (Peng et al.,

1997; Peng and Fan, 2000).

In this paper, a new approach for polycrystal plasticity is developed based on the nonclassical hardening

law (Peng et al., 1997; Peng and Fan, 2000) and the Hill�s self-consistent scheme. A new parameter related

to the plastic dissipation on each slip system is introduced and embedded in the Bassani�s definition for

cross-hardening, which greatly improves the description for nonproportional cyclic plasticity. The tan-

gential elastoplastic tensor relating the increments of stress and strain in a single crystal is proposed and the

corresponding numerical algorithm for polycrystal plasticity is developed. The elastoplastic responses of
316 stainless steel subjected to cycling along typical proportional and biaxial nonproportional paths are

analyzed, and the main characteristics of polycrystal nonproportional cyclic plasticity are well described

compared with experimental results (Murakami et al., 1989; Ohashi et al., 1985).
2. A brief introduction to the nonclassical hardening law

In polycrystalline materials, the deformation of any single crystal is inevitably constrained by the
neighboring crystals due to the nonhomogeneous morphology of the materials, which may result in residual

microstress fields. On the other hand, in a plastically deformed single crystal, there also exist residual

microstress fields in the stochastic microstructures due to the nonhomogeneous nature and the respective

pattern of lattice defects, for instance, dislocations (Song, 1992). The energy stored in the residual micro-

stress fields may contribute to the subsequent plastic deformation. With this concept, a hardening law was

proposed for single crystals (Peng et al., 1997; Peng and Fan, 2000) as follows:
_ssðmÞ ¼
XN
n¼1

hmn _ccðnÞ ðm ¼ 1; 2; . . . ;NÞ; ð1Þ
where cðmÞ and sðmÞ denote the slip amount and the shear stress on the mth slip system; N , the number of the
independent slip systems; dmn, the Kronecker symbol and hmn, the hardening coefficient expressed as
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hmn ¼ Tmdmn ðm not summedÞ; ð2Þ
with
Tm ¼ C � aCm

fmHm
sðmÞ; Cm ¼ dcðmÞ

dfðmÞ
ðm not summedÞ; ð3Þ
C and a are material dependent parameters. fm and Hm are hardening functions describing respectively

instantaneous hardening related to the slip on the mth slip system, and cross-hardening related to the in-
teraction between the slips on different slip systems (Bassani, 1990). It can be proved that hmn is positively
definite if fmHm is positive and nondecreasing, which guarantees the existence and uniqueness of the

solution. fðmÞ is the accumulated slip on the mth slip system defined by
dfðmÞ ¼ jdcðmÞj; ð4Þ
which is nondecreasing and can be used as generalized time to measure the slip history of the mth slip

system. In order to simplify the nonlinear analysis, an intrinsic time, originally proposed by Valanis (1980),
was introduced to describe the plastic deformation history on the mth slip system as follows:
dzðmÞ ¼ dfðmÞ

fmHm
ðm not summedÞ: ð5Þ
With this definition and making use of Eqs. (1)–(3), the evolution of the shear stress on the mth slip

system can be expressed as
dsðmÞ ¼ CdcðmÞ � asðmÞ dzðmÞ ðm not summed; m ¼ 1; . . . ;NÞ: ð6Þ
It is worthwhile to emphasize that this slip model does not use the concept of a critical shear stress, due

to the consideration of the contribution of the energy stored in the residual microstress fields to the sub-

sequent plastic deformation. However, the critical shear stress, as used in the conventional slip model, can

be obtained as a special case from the above slip model by assuming a tends to infinite while C=a remains

limited (Peng and Fan, 2000)
sm ¼ �a0fmHm ðm not summedÞ; ð7Þ
where a0 ¼ C=a represents the initial critical shear stress. Eq. (7) can be also equivalently derived from the

model without taking into account the energy stored in the residual microstress fields and its contribution

to subsequent plastic deformation (Peng and Fan, 2000).
3. Physically based hardening functions

In Eq. (3), hardening functions fm and Hm are introduced to describe respectively the instantaneous
hardening related to dislocation pile-ups, and the cross-hardening related to dislocation tangles. During

plastic deformation, obstacles formed by the pile-ups and tangles of dislocations increase the resistance to

active dislocations and result in macroscopic hardening.

Dislocation pile-ups induce long-range residual microstress fields, which are directional and thus kine-

matic, accounting for the Bauschinger effect to some extent. The hardening of a slip system induced by

dislocation pile-ups should be, therefore, determined by the superposition of the effects of the corres-

ponding residual microstress fields caused by dislocation pile-ups in all slip systems.

The hardening related to dislocation tangles can be attributed to the interaction between the active
dislocations and dislocation forests. The associated residual microstress fields are of short-range and less

directional. This type of hardening depends strongly on slip histories and the states of dislocation on all slip



5410 X. Peng, J. Fan / International Journal of Solids and Structures 40 (2003) 5407–5422
systems. On the other hand, the interaction between dislocations from different slip systems may make

different contribution to hardening.

Suppose fm possesses a saturated value corresponding to the saturated state of dislocation, the evolution

of fm with respect to intrinsic time zðmÞ should be related to the current fm and may be given approximately
the following simple form,
dfm
dzðmÞ

¼ b1ðd1 � fmÞ ðm ¼ 1; 2; . . . ;NÞ; ð8Þ
where d1 and b1 are two material parameters representing the saturated value of fm and the rate for fm to

approach d1, respectively.
Based on a detailed analysis of cross-hardening mechanisms, Bassani (1990) proposed a hardening rule

to describe cross-hardening, and the form of this rule is directly adopted to be the cross-hardening function
Hm, i.e.,
Hm ¼ 1þ
X
k 6¼m

kmk tanhð2bsf
ðkÞÞ ðm ¼ 1; 2; . . . ;NÞ; ð9Þ
where fðkÞ denotes the accumulated slip on the kth slip system, bs is a material parameter representing the

rate for Hm to approach its saturation value, and kmk is a coupling parameter related to the orientations of

the considered two slip systems m and k, taking into account the contribution of the accumulated slip on the

kth slip system to the hardening of the mth slip system.

A direct application of Eq. (9) in the current constitutive framework may overestimate the cross-

hardening in the case of proportional cyclic loading if fmk is simply composed of a set of constants (Peng

et al., 1997; Peng and Fan, 2000). It is known that the summation of the dissipated energy on all slip

systems equals the energy dissipated during the corresponding macroscopic plastic deformation. Compared
with a proportional cyclic loading, it can be found that more energy is dissipated during nonproportional

cyclic loading since it may involve less unloading and plastic deformation may develop at a higher level of

stress. Consequently, it may induce stronger residual microstress fields and more energy stored in the

microstructures, which accounts for the cross-hardening in materials. With this concept a dissipated energy

ratio for the mth slip system is defined as follows:
nðmÞ ¼ gðmÞ

AmfðmÞ
; ð10Þ
in which
gðmÞ ¼
Z

sðmÞ dcðmÞ ðm not summedÞ ð11Þ
denotes the energy dissipated on the mth slip system, Am is the parameter related to material property and

the current state of instantaneous hardening, fm. If Am ¼ fmC=a, as used in the analysis, the denominator on

the right-hand side of Eq. (10) represents a bound of the dissipated energy on the mth slip system under the

condition of Hm ¼ 1, i.e., without taking into account the cross-hardening (see Appendix A). It will be seen

that the combination of this dissipated energy ratio and Bassani�s hardening rule can yield a satisfactory

description for additional nonproportional hardening.

With the proposed dissipated energy ratio, the coupling coefficients kmn (Eq. (9)) can be defined as
follows:
kmn ¼ gmnn
ðmÞnðnÞ ðm; n ¼ 1; 2; . . . ;N ; m; n not summedÞ; ð12Þ
where gmn can be expressed in the following matrix form (Bassani, 1990), with the sequence identical with
that of the 12 independent slip systems (see Table 3):
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½gmn
 ¼

0 c1 c1 c3 c2 c1 c1 c2 c2 c1 c3 c2
0 c1 c2 c1 c2 c1 c3 c1 c3 c1 c2

0 c1 c2 c3 c2 c1 c3 c2 c2 c1
0 c1 c1 c2 c1 c2 c2 c3 c1

0 c1 c3 c2 c1 c2 c1 c3
0 c1 c2 c3 c1 c2 c2

0 c1 c1 c1 c2 c3
0 c1 c3 c2 c2

sym: 0 c2 c1 c1
0 c1 c1

0 c1
0

2
6666666666666666664

3
7777777777777777775

; ð13Þ
where c1, c2 and c3 are material constants. It can be seen that the coupling between the dislocation states on

two slip systems is introduced into the cross-hardening via kmn by taking into account the dissipated energy

ratios on these two slip systems. In general, the dissipated energy ratio is smaller and the corresponding

cross-hardening is insignificant under proportional loading. The dissipated energy ratio may increase re-

markably in the case of nonproportional loading, which may result in strong cross-hardening. It will be
seen that the proposed hardening parameter kmn can effectively distinguish the nonproportional hardening

corresponding to different types of strain paths.

It can be seen that there exist saturated values d1 and 1þ
P

k 6¼m kmk for fm and Hm respectively. It can be

shown that the shear stress on a slip system has a saturated value when plastic deformation fully develops,

and the hardening modulus Tm tends to vanish as the shear stress approaches its saturated value.

It is known that besides the cross-hardening corresponding to nonproportional loading, the additional

hardening corresponding to cyclic plastic strain range also plays an important role in the cyclic plasticity of

metallic materials (Tanaka et al., 1985a; Ohno, 1990; Fan and Peng, 1991). Fan and Peng (1991) introduced
a hardening factor, related to the cyclic nonhardening region proposed by Ohno (1982) and Ohno and

Kachi (1986), into a multiplicatively separated form of hardening function to describe the effect of plastic

strain amplitude. Although in this paper attention is mainly paid to the effect of nonproportionality, we like

to mention that the additional hardening related to plastic strain amplitude can also be taken into account

by fm (Eq. (8)), provided the parameter d1 is related to the amplitude of the slip on each slip system. It will

be studied in the further improvement of the proposed model.
4. Hill’s self-consistent scheme

In the KBW self-consistent scheme, a crystal is assumed to be embedded in a homogeneous matrix. Hill

(1965) and Hutchinson (1970) criticized the KBW model for its elastic matrix and proposed a new self-

consistent scheme where the embedded inclusion is subjected to the homogeneous constraint of the matrix
associated with overall elastoplastic tangent moduli. The misfit strain between the inclusion and the matrix

tends to be absorbed locally in the surrounding matrix. Therefore, the constraint tensor for the outer phase

may not be homogeneous and the self-consistent scheme is based on the assumption of uniform overall

constraint tensor (Takahashi et al., 1994). Takahashi (1988) thought that the KBW scheme gives the upper

limit of the flow stress, whereas the Hill�s scheme gives the lower limit. Takahashi et al. (1994) performed a

finite element analysis of elastoplastic behavior of FCC polycrystalline metals with the initial strain method

and the successive integration method, and found that the computed results fit the results with the KBW

model better compared with the results using the Hill�s self-consistent scheme. Peng et al. (1997), Peng and
Fan (2000) also analyzed the cyclic plasticity of FCC polycrystalline materials with a new slip model and
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the KBW scheme, and results obtained are reasonable compared with the experimental results. However,

the Hill�s self-consistent scheme is to be used in the following analysis, because it is thought that, in gen-

eral, the Hill�s self-consistent scheme may provide more actual result because it employs less assumptions,

although it may involve some numerical difficulties due to complicated implicit iteration.
Suppose the considered crystals and polycrystal are plastically incompressible, under the condition of

isothermal and small deformation, the Hill�s self-consistent scheme (Hill, 1965) gives
drc � d�rr ¼ �L� : ðdec � d�eeÞ; ð14Þ

where drc and dec denote respectively the increments of the stress and strain tensors of a single crystal, d�rr
and d�ee are the increments of the averaging stress and plastic strain of the polycrystal, and L� is a tangential

‘‘constraint’’ tensor. L� is determined by
L� ¼ L : ðS�1 � I4Þ; ð15Þ

where I4 is the identity tenser of rank 4, L is the tangential elastoplastic tensor relating d�rr and d�ee by
d�rr ¼ L : d�ee; ð16Þ

and S is the Eshelby�s tensor. Assuming spherical inclusion, the Eshelby�s tensor can be expressed as
S ¼ aI2 � I2 þ b½I4 � I2 � I2
 ð17Þ

with
b ¼ 2ð4� 5mÞ
15ð1� mÞ ; a ¼ 1� b; ð18Þ
and I2, the identity tenser of rank 2. d�ee is related to dec by the following relationship
dec ¼ Ac : d�ee ð19Þ

with
Ac ¼ ½L� þ Lc
�1
: ½L� þ L
; ð20Þ
and Lc is the tangential elastoplastic tensor relating drc and dec of a single crystal by
drc ¼ Lc : dec: ð21Þ

Eqs. (19) and (20) give the following invariant for each crystal
dq ¼ ½L� þ Lc
 : dec ¼ ½L� þ L
 : d�ee; ð22Þ

which is important in analysis. Assuming the overall increment of stress d�rr to be determined by drc of all

single crystals through a certain averaging procedure, one obtains the relationship between d�rr and d�ee as

follows:
d�rr ¼ hdrci ¼ hLc : Aci : d�ee: ð23Þ

Comparing Eq. (23) with Eq. (16) immediately gives
L ¼ hLc : Aci: ð24Þ
5. Application and verification

5.1. Tangential elastoplastic modulus of a single crystal

It was pointed out that when a is very large, extending Eq. (6) directly to an incremental form would

result in a large error in numerical analysis and even affect the convergence of the solution (Peng and Fan,
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1993). In order to avoid this situation, the integral of Eq. (6) was introduced and the following incremental

constitutive equation was derived (Peng and Fan, 2000):
DsðmÞ ¼ Am DcðmÞ þ Bm DzðmÞ ðm not summedÞ; ð25Þ
in which
Am ¼ kmC; Bm ¼ �kmasðmÞðzðmÞn Þ; zðmÞ ¼ zðmÞn þ DzðmÞ

km ¼ 1� e�a DzðmÞ

aDzðmÞ
; DzðmÞ ¼ DfðmÞ

fmHm
; DfðmÞ ¼ jDcðmÞj

ðm not summedÞ; ð26Þ
zðmÞn and smðzðmÞn Þ denote respectively the intrinsic time and the corresponding shear stress on the mth slip

system after the nth increment of loading, with which Eqs. (1)–(3) can be rewritten as
DsðmÞ ¼ Tm DcðmÞ; Tm ¼ Am þ CmBm

fmHm
; Cm ¼ DcðmÞ

DfðmÞ
ðm not summedÞ: ð27Þ
The hardening law for the mth single crystal, therefore, can be rewritten as follows:
DsðmÞ ¼
XN
n¼1

hmn DcðmÞ: ð28Þ

ðmÞ ðmÞ p
It is known that Ds and Dc relate respectively to Drc and Dec of the corresponding single crystal by
DsðmÞ ¼ pm : Drc; Depc ¼
XN
m¼1

pm DcðmÞ; ð29Þ
where
pm ¼ 1
2
ðnm � sm þ sm � nmÞ ð30Þ
denotes the orientation tensor of the mth slip system, nm and sm are the unit vectors directing along res-

pectively the outer normal of the slip plane and the slip direction.

It has been noted that the hardening tensor hmn is positively definite, Eq. (1), therefore, can be expressed

inversely as follows:
DcðmÞ ¼
XN
n¼1

bmn DsðnÞ ðm ¼ 1; 2; . . . ;NÞ: ð31Þ
Making use of Eqs. (29) and (31), one obtains
Depc ¼
XN
m¼1

XN
n¼1

bmnPm

"
� Pn

#
: Drc: ð32Þ
Substituting
Dec ¼ Deec þ Depc and Deec ¼ D�1
e : Drc ð33Þ
into Eq. (32), where Deec and De denote the increment of the elastic strain of a singe crystal and the elastic
modulus of the material, one derives the following relationship
Drc ¼ Lc : Dec ð34Þ
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with
Lc ¼ D�1
e

"
þ
XN
m¼1

XN
n¼1

bmnPm � Pn

#�1

: ð35Þ
The matrix form of this equation is given in Appendix B.

5.2. A mixed averaging procedure

In general, Eq. (24) can be expressed as follows:
L ¼ 1

V

XN 0

i¼1

½Lc : Ac
iVi ; ð36Þ
where ½Lc : Ac
i and Vi represent respectively the ½Lc : Ac
 and the volume of the ith single crystal; V , the
volume of the polycrystal and N 0, the number of the present single crystals. If the volume of each single

crystal is assumed identical, i.e., V ¼ N 0Vi , then Eq. (34) can be rewritten as
L ¼ 1

N 0

XN 0

i¼1

½Lc : Ac
i: ð37Þ
With the assumption that a polycrystal is an aggregate of numerous single crystals with randomly

distributed orientations, Eq. (37) can be expressed as an integral and then calculated with the some nu-
merical quadrature approach. This method, in substance, determines approximately the response of a

polycrystal using a number of single crystals with specific orientations by weight factors. In order to make

the specified orientations distribute as uniformly as possible and make the computation more efficient, a

mixed averaging approach was proposed alternatively (Peng et al., 1997; Peng and Fan, 2000) for poly-

crystal analysis (Peng et al., 1997; Peng and Fan, 2000). It is based on an isosahedron: the outer normal

directions of the 20 faces determine 20 spatially uniformly distributed orientations and are represented by

20 sets of hi and /i (1; 2; . . . ; 20), and in each face it is assumed that there are numerous single crystals with

randomly distributed orientations, i.e., x varies continuously (see Fig. 1). If the arithmetic averaging
procedure is used for hi and /i (i ¼ 1; 2; . . . ; 20) and the Gaussian averaging for x, Eq. (37) can be specified

as
L ¼ 1

20

X20
i¼1

1

2p

Z p

�p
Lcðhi;/i;xÞ : Acðhi;/i;xÞdx: ð38Þ
θ

φ ω

I

II

III

1

2 3

Fig. 1. Global and local coordinate systems.



Table 1

Coordinates of Gaussian points xj and the corresponding weight coefficients Ax
j

j 1 2 3 4

xj (rad) 0.1090633 0.5183777 1.052419 1.461733

Ax
j 0.3478548 0.6521452 0.6521452 0.3478548

Table 2

Values of the 10 sets of independent hj and /j

j 1 2 3 4 5 6 7 8 9 10

hj (�) 0 72 144 216 288 288 216 144 72 0

/j (�) 37.38 37.38 37.38 37.38 37.38 79.19 79.19 79.19 79.19 79.19
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It can be observed that the 20 faces of an isosahedron can be separated into 10 sets, in each of which the
two faces are parallel to each other. On the other hand, the integral domain of x can be reduced to ½0; p=2

due to symmetry. Applying the Gaussian quadrature to Eq. (36), one obtains
Table

n and

n

s

L ¼ 1

20

X10
i¼1

X4

j¼1

Ax
j Lcðhi;/i;xjÞ : Acðhi;/i;xjÞ; ð39Þ
where the coordinates of the Gaussian integration points xj and the corresponding weight coefficients Ax
j

are given in Table 1, and the values of the 10 sets of independent hi and /i (i ¼ 1; 2; . . . ; 10) are listed in
Table 2.

The above averaging procedure involves the responses of 40 single crystals with different orientations,

with improvement by the Gaussian weight coefficients. Analysis shows that this mixed procedure can be of

satisfactory numerical stability and convergence in the analysis for the elastoplastic responses of poly-

crystalline materials subjected to complex loading histories.
5.3. Application and verification

The elastoplastic responses of 316 stainless steel subjected to typical proportional and biaxially non-

proportional strain cycling are analyzed. The material has a face-centered-cubic (FCC) crystal lattice. In the

local coordinate system, the n and s of the 12 independent slip systems are listed sequentially in Table 3.

The corresponding numerical algorithm for analyzing the elastoplastic behavior of polycrystalline ma-

terials subjected to strain histories is suggested and stated as follows: with the result obtained from the kth
iteration of the nth increment of loading, such as ðD�rrÞðkÞðnÞ of the polycrystal, ðDecÞðkÞðnÞ and ðDrcÞðkÞðnÞ of each

single crystal, ðDcðmÞÞðkÞðnÞ, ðD1ðmÞÞðkÞðnÞ, and ðDzðmÞÞðkÞðnÞ of each slip system, one can compute ½hij
ðkÞðnÞ with Eqs. (26),

(27) and (2), ½Lc
ðkÞðnÞ and ½Ac
ðkÞðnÞ for each single crystal with Eqs. (35) and (20) respectively, and then ½L
ðkÞðnÞ for

the polycrystal with Eq. (39). For the given nth increment of strain ðD�eeÞðnÞ, ðDqÞ
ðkþ1Þ
ðnÞ can be obtained using

Eq. (20), with which ðDecÞðkþ1Þ
ðnÞ can be obtained by solving Eq. (22), and then ðDrcÞðkþ1Þ

ðnÞ , ðDsmÞðkþ1Þ
ðnÞ and
3

s of the 12 independent slip systems of a FCC crystal

1 2 3 4 5 6 7 8 9 10 11 12

(1 1 �11) (1 1 �11) (1 1 �11) (1 �11 1) (1 �111) (1 �11 1) (1 �11 �11) (1 �11 �11) (1 �11 �11) (1 1 1) (1 1 1) (1 1 1)

[1 0 1] [0 1 1] [1 �11 0] [1 1 0] [0 1 1] [1 0 �11] [1 0 1] [1 1 0] [0 1 �11] [1 0 �11] [0 �11 1] [1 �11 0]
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ðDcmÞ
ðkþ1Þ
ðnÞ by Eqs. (21), (29) and (31), sequentially. The iterative process continues until the following in-

equality is satisfied,
Table

Mater

G (G

78.0
d ¼ max
N 0

j¼1

Dqðkþ1Þ
ðnÞ � DqðkÞðnÞ

��� ���
Dqðkþ1Þ

ðnÞ

��� ���
2
64

3
75

j

6 d0: ð40Þ
After superimposing the derived increments on the corresponding quantities up to the (n� 1)th incre-

ment of loading, one obtains ð�rrÞðnÞ of the polycrystal, and ðsmÞðnÞ, ð1mÞðnÞ, ðzmÞðnÞ, ðfmÞðnÞ, ðHmÞðnÞ of each slip

system, and then starts the computation of the next increment of loading. In Eq. (40) d0 is the tolerant error,

computation shows that d0 ¼ 0:01 can satisfy the requirement of both accuracy and computational effi-

ciency.

The responses of 316 stainless steel subjected to cycling along proportional and biaxial nonproportional

strain paths at room temperature will be analyzed. The material constants were identified with the ex-

perimental result by Tanaka et al. (1985b) and shown in Table 4.
The response of a slip system during a loading–unloading–reloading process is shown in Fig. 2, where

the cross-hardening is ignored. The solid line corresponds to the a and C=a given in Table 4; while the

dashed line corresponds to a ¼ 2500 and C=a ¼ 0:095 GPa, i.e., both a and C are reduced to 10% of the

values in Table 4. It is seen that, when a is sufficiently large, the constitutive behavior of a slip system

predicted with the proposed slip model can be sufficiently close to that with the conventional slip model.

With a proper choice of a, the proposed slip model can describe to some extent the Bauschinger effect. For

the biaxial loading in the following analysis, the following stress and strain vectors are defined respectively:
~rr ¼ rn1 þ
ffiffiffi
3

p
sn2; ~ee ¼ en1 þ

1ffiffiffi
3

p cn2; ð41Þ
where r and s denote respectively the axial and the shear stress, e and c are the axial and shear strain, n1 and

n2 are two unit vectors perpendicular to each other. The equivalent stress and strain, re and ee, as well as the
accumulative strain s are also defined as follows:
4

ial constants

Pa) m C=a (GPa) a d1 c1 c2 c3 bs

0.231 0.0952 25000 1.0 0.0 0.09 0.135 196
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Fig. 2. The loading–unloading–reloading property of a slip system.
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req ¼ j~rrj ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 þ 3s2

p
; epeq ¼ j~eepj ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðeÞ2 þ 1

3
ðcÞ2

r
; s ¼

Z
jd~eej: ð42Þ
The responses of the material subjected to symmetrically tensile/compressive strain cycling and pure
shear strain cycling with a fixed equivalent strain amplitude ea ¼ 0:4% are shown in Figs. 3 and 4, res-

pectively. They are in good agreement with the experimental results (Ohashi et al., 1985; Murakami et al.,

1989). Compared with the previous analysis (Peng et al., 1997), it can be seen that the hardening that was

overpredicted is satisfactorily described by using the new definition for cross-hardening. Distinct difference

in the shapes of the hysteresis loops can be observed between these two kinds of strain cycling. On the other

hand, the equivalent stress amplitudes corresponding to shear strain cycling is distinctly smaller than that

corresponding to the tensile/compressive strain cycling (also see Fig. 7) although the equivalent strain

amplitudes are identical. These differences coincide with the experimental observation (Ohashi et al., 1985).
These differences can be attributed to the difference of the activated slip systems under these two kinds of

loading, which cannot be well described simply by the phenomenological model with Mises equivalent rule.

In the analysis for the response of materials subjected to nonproportional strain cycling, one usually

defines the radius of the minimal super-sphere surrounding the strain path as the equivalent strain am-

plitude ea. Figs. 5(b) and 6(b) show, respectively, the computed biaxial stress trajectories corresponding to

cyclic strain along a square (Fig. 5(a)) and 90� out-of-phase circular (Fig. 6(a)) paths with ea ¼ 0:4% in the

e � c=
ffiffiffi
3

p
plane, which are in good agreement with the experimental results (Ohashi et al., 1985; Murakami

et al., 1989). Compared with the results corresponding to proportional paths (Figs. 3 and 4), the stress
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Fig. 3. Computed r–e curve under symmetrically tensile/compressive strain cycling with ea ¼ 0:4%.
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curve under symmetrically torsional strain cycling with ea ¼ 0:4%.
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amplitudes in Figs. 5 and 6 increase by about 60% (also see Fig. 7), which can be attributed to the non-

proportional hardening of the material. In phenomenological analysis, it was usually described by intro-
ducing an appropriate definition of nonproportionality and the corresponding hardening rules (Benallel

and Marquis, 1987; Fan and Peng, 1991; Tanaka, 1994). However, some fundamental experimental results

cannot be well described due to the complicated change in the microstructure. The main features of the 316

stainless steel subjected to typical biaxial nonproportional cycling strain paths are satisfactorily described

with the proposed approach and the modified cross-hardening rule.

The variations of the maximum equivalent stress req against the accumulative strain s of the material

subjected to cyclic strain along six typical biaxial paths in the e–c=
ffiffiffi
3

p
plane with constant strain amplitude

ea ¼ 0:4% are shown in Fig. 7(a), among which, the curves corresponding to cyclic tension/compression and
90� out-of-phase circular paths are in satisfactory agreement with the experimental curves obtained by

Murakami et al. (1989), as shown in Fig. 7(b).

As was done by Tanaka et al. (1985b) in the experiment on plastic strain controlled nonproportional

cyclic plasticity, the strain paths used in Fig. 7(a) can also be classified into three groups: (1) proportional

ones (cyclic tension/compression and cyclic torsion); (2) paths with radiation segments (stellate and cruci-

form ones); and (3) paths without any segment passes through the origin (square and 90� out-of-phase

circular ones). Tanaka et al. (1985b) investigated experimentally the nonproportional cyclic plasticity of 316

stainless steel along these paths in the ep–cp=
ffiffiffi
3

p
plane with plastic strain amplitude epa ¼ 0:2% and the

experimental relationships between req and accumulative plastic strain sp corresponding to these paths are



Fig. 7. The relationships between the equivalent stress amplitudes and the accumulated strain or plastic strain along different paths. (a)

Computed, strain controlled, (b) experimental, strain controlled (Murakami et al., 1989) and (c) experimental, plastic strain controlled

(Tanaka et al., 1985b).
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shown in Fig. 7(c) (Tanaka et al., 1985b). Compared with the results by Tanaka, qualitative agreement, in

both the saturated values of req and the sequence of curves, can be observed.
6. Conclusions

The following conclusions can be drawn from the above analysis:

(1) The adopted nonclassical hardening law can take into account the contribution of the energy stored

in the microstructure of a plastically deformed material to subsequent plastic deformation. It does

not use the concept of a critical shear stress and the corresponding slip criterion, which may bring con-

venience to analysis because it involves no additional process to identify the activation of slip systems

and the direction of slip.

(2) Both instantaneous hardening and cross-hardening can be taken into account. A ratio of the energy

dissipated on each slip system with respect to the maximum possible dissipated energy without consi-

dering cross-hardening was defined and embedded in the Bassani�s cross-hardening parameters. It yields
a simple cross-hardening rule that proves effective in the description for the nonproportional cyclic plas-

ticity of polycrystalline materials.

(3) The corresponding numerical algorithm based on the Hill�s self-consistent scheme and a mixed averag-

ing method was developed for the analysis of elastoplastic responses of polycrystalline materials. The

computation shows satisfactory numerical stability, quick convergence and high efficiency.
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(4) The cyclic plasticity of 316 stainless steel subjected to cyclic straining along typical proportional and

biaxially nonproportional paths was analyzed and the main characteristics were well reproduced. Com-

parison between the computed and the experimental results showed satisfactory agreement.
Acknowledgements

The authors gratefully acknowledge the financial support to this work from the Natural Science

Foundation of China (10272119) and the Education Ministry of China.
Appendix A

The integral of Eq. (6) can be expressed as:
sðmÞ ¼
Z zðmÞ

0

Ce�aðzðmÞ�z0Þ dcðmÞ

dz0
dz0: ðA:1Þ
Noticing Eqs. (4) and (5) and assuming Hm ¼ 1, a bound of the absolute value of sðmÞ can be determined

by
jsðmÞj ¼
Z zðmÞ

0

Ce�aðzðmÞ�z0Þ dcðmÞ

dz0
dz0

�����
�����6

Z zðmÞ

0

Ce�aðzðmÞ�z0Þ dcðmÞ

dz0

����
����dz0 ¼ Cfm

Z zðmÞ

0

Ce�aðzðmÞ�z0Þdz0

¼ C
a
fmð1� e�azðmÞ Þ < C

a
fm: ðA:2Þ
A bound of the dissipation energy gðmÞ (Eq. (11)) on the mth slip system, therefore, can be obtained by
gðmÞ ¼
Z zðmÞ

0

sðmÞ
dcðmÞ

dz0
dz0 6

Z zðmÞ

0

jsðmÞj dcðmÞ

dz0

����
����dz0 < C

a
fm

Z fðmÞ

0

dfðmÞ ¼ C
a
fmfðmÞ: ðA:3Þ
Appendix B

Eqs. (28)–(30) can be expressed in matrix forms as follows:
fDsg ¼ ½H 
fDcg or fDcg ¼ ½H 
�1fDsg; ðB:1Þ

fDepcg ¼ ½P
fDcg fDsg ¼ ½P
TfDrg ðB:2Þ

in which
½P
 ¼ ½fp1g; fp2g; . . . ; fpNg
; ðB:3Þ
with
fpmg ¼ pm11; p
m
22; p

m
33; 2p

m
12; 2p

m
23; 2p

m
31

� �T
; ðB:4Þ

fDsg ¼ ðDs1;Ds2;Ds3; . . . ;DsNÞT; fDcg ¼ ðDc1;Dc2;Dc3; . . . ;DcN Þ
T
; ðB:5Þ

fDrcg ¼ ðDrc11;Drc22;Drc33;Drc12;Drc23;Drc31ÞT ðB:6Þ
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and
fDepcg ¼ ðDepc11;Depc22;Depc33; 2Depc12; 2Depc23; 2Depc31Þ
T
: ðB:7Þ
It can be obtained from Eqs. (B.1) and (B.2) that
fDepcg ¼ ½P
½H 
�1½P
TfDrcg: ðB:8Þ
Keeping in mind that
fDecg ¼ fDepcg þ fDeecg and fDeecg ¼ ½De
�1fDrcg; ðB:9Þ
fDeecg and ½De
 denoting the increment of elastic strain of a single crystal and the elastic matrix, one obtains
fDrcg ¼ ½Lc
fDecg; ðB:10Þ
with
½Lc
 ¼ ½De
�1
h

þ ½P
½H 
�1½P
T
i�1

: ðB:11Þ
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